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ABSTRACT

Let f£(t) be defined in (0,11 by

. 1

< -—

0 if 0<tz3

1 2

t) = =1 i =~ fd

f£(t) 3 if 3 <t 23
. 2

1 if 3-§_t < 1

and extended to all real t by requiring that ¢£(t) should be an even function

having the period 2 (See Figure 1). The plane arc defined parametrically by the

equations
o 2n © 2n+l
£(37't) £(3 t)
x(t) = ] ==X, y(t) = ] ., (0<t=<l),
n=0 2n+l n=0 2n+1

is known to be continuous, and to map the interval I = {0 <x :_l} onto the
entire square I2 = {0 < x,y <1} (see [3]). Here it_is shown that this arc is
nowhere differentiable, meaning the following: There is no value of t such

that both derivatives x'(t) and y'(t) exist and are finite.
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SIGNIFICANCE AND EXPLANATION

Well known are examples of area-filling curves, and of

continuous functions which are nowhere differentiable.

This

paper brings together these two pathological properties by

showing that the area-filling curve described in_+3T*I;cks,at
n

every point/a finite derivative.
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THE PEANO CURVE OF SCHOENBERG 1S NOWHERE DIFFERENTIABLE

James Alsina
Middlebury College

1, Introduction. It came as quite a surprise to the mathematical world wher, in

1875, Weierstrass constructed an everywhere continuous, nowhere differentiable function
(see [1]). Equally startling though was the discovery by Giuseppe Peano [2] fifteen
years thereafter that the unit interval could be mapped continuously onto the entire
unit square 12 .

Well known now are examples of area-filling curves, and of continuous functions
which are nowhere differentiable. This paper brings together these two pathological
properties by showing that the plane Peano curve of I. .1. Schoenberg [3], defined in
§3 below, lacks at every point a finite derivative (Theorem 3). An analogous space
curve is similarly shown to fill the unit cube I3 (Theorem 2}, and to be nowhere

*
differentiable (Theorem 4),

2. An identity on the Cantor Set ['. The foundation of Schoenberg's curve is

the continuous function f£(t), defined first in [0,1] by

o, if 0 <t < %

(2.1) f(t) = 3t-1, if % < t < 2
- =3

1, if %it<1.

We then extend its definition to all real t such that f(t) is an even function of
period 2 (See Figure 1 below)., Thus

£(-t) = £(t), £(t+2) = £(t) for all t .
flo 4

-1 4 2 -3 <

Figure 1

*

The author would like to thank Professor Schoenberg for his invaluable suggestions on
the preparation of this paper.
Sponsored by the UNited Btates AZNMy UNAer UOREract No. DAAGZ9-75-C-0024.
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The main property of this function is that it produces the following remarkable identit:y

on T,
Lemma 1. If t 1is an element of Cantor's Set [ , then
< n
2
(2.2) e= § HOH
n=0 3
Proof: If indeed t « [ , it can be expressed as
® a
n
(2.3) t= ] YL (a = 0,2)
n=0 3

then (2.2) would follow from the relations

(2.4) a =2- e3"t) , (n=0,1,2,...).

To prove (2.4) observe that (2.3) implies

a a a a
3nt=3n(TO+...+n;l)+—3n+—’l;i+...,
3 3
whence
n n an+1
(2.5) 3t =M +—+ + vee o (M is an even integer).
n 3 32 n
From the graph of f£(t) we conclude the following:
If a_ =0, then M < Bnt < M+ 2 + 2 + e0e =M+ L
n n - — 32 33 n 3

and therefore f£(3"t) =0 .

If a =2, then M_+ 2. <M+ 2 + 2 ee=M +1 and so £(3"t) = 1.
n n 3 - —'n 3 32 n

This establishes (2.4) and thus the relation (2.2).

3. Schoenberg's curve. This function is defined parametrically by the equations

T 1 2n
(3.1) x(t) = ] —= £33y,
o 2n+l
(3.2) v = J =™y, e <.

n=0
The mapping t » (x(t),y(t)) indeed defines a curve: its continuity follows from the
expansions (3.1), (3.2) being not only termwise continuous, but dominated by the series

of constants

l -
n+l

(3.3) ) 1.

n=1 2

These conditions insure their uniform convergence, and therefore also the continuity of

their sums,

-2-
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tlow 1f t .. hence

by (2.4) we may write (3.1) and (3.2) as

a ' a

: 1 2n 1 2n+1

(3.5) x(t) = . —_, yle) = B2 tha )
L= :n+l 2 ! n=0 2n+1 2

We then invert thesc relationships: let P

(x(t),y(t)) be an arbitrarily preas-igneid

0

point of the square 17 = - _ %,y _ 1", and regard (3,5) as the binary expansions of

the coordinates of P . Thiy defines a,. and a, and therefore also the full

sequence ta . With it we define t ( ) by (2.4), and thus the expressions (3.9,
n

being a cons(qucnce of (3.1) and (3,2), show that the point P is on our curve. This
proves
Theorem 1, The mapping
t s (x(t), y(t))
from I into 12 defined by (3.1), (3.2), is continuous, and covers the squarc 1,
even if t is restricted to the Cantor Set I,
This result extends naturally to higher dimensions. We discuss only the case of

the space curve

(3.6) xo = —=c"
n=0 2
¥ 1 3n+l
(3.7) yit) = § —5 £ t) ,
n=0 2
,
(3.8) 2) = § o—— £x>™3%) ,  (0-<t <1
n+l - —
n=0 2

The continuity of X(t), Y(t), and Z(t), as in the two-dimensional case, isguaranteed
by the continuity of each of their terms and by the convergence of the series of con-
stants (3.3). 1If we define t by (3.4), so a = 0,2 for n = 0,1,2,... , then again

(2.4) shows that

S 1 3 e a Pt a
(3.9)  x(t) = [ = SE v = ] —1—1—3—'2"'-1— , Z(t) = 7 11 . _lle’i .
n=0 2 n=o 2™ n=0 2™

If the right sides are the binary expansions of the coordinates of an arbitrarily chosen
. 3 . . 3.
point of 17, then this point of I is reached by our space curve for the value of

t - . defined by (3.4). Thus we have proven

-3~




Theorem 2, The mapping
t o> (x(e), Y(t), Z(t))

from I into I3 defined by (3.6), (3.7), (3.8), is continuous, and fills the cube IE, !
even if t is restricted to the Cantor Set T,

Theorems 1 and 2 raise an interesting question. Just how does the plane curve, for
example, fill the square as t varies from 0 to 1 ? Though by no means may this
question be answered completely, we can gain sume feeling for the curve's path by viewing
it as the point-for-point limit of the sequence of continuous mappings.
(3,10) t > (xk(t), yk(t)), (k = 0,1,2,...),
where X and y, are the k-ti-ll partial sums of the series (3.1) and (3.2) defining
x and y . The graph of this sequence for k = 0,1,2 and 0 <t <1 is shown below
in Figure 2, (The origin is at the lower left corners, with Xy and ¥, on the
horizontal and vertical axes, respectively. The dotted lines delineate the boundary of

%)

B LRI L TR T

=
»
I~

v

Figure 2, The approximation curves (xk(t),yk(t)) for k = 0,1,2.
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Notice in particular in Figure 2 that the curves lack the one-to-one property for
k = 1,2. This fact, together with the promise for increased complexity in these
approximation curves as k + @ , suggests that the limit curve itself may be many-to--ns

The implication is indeed correct, and not only for the case at hand. If an ar:a-
filling curve were one-to-one, it would be a homeomorphism. The unit interval and :r
(for n > 2), however, are not homeomorphic, since the removal of any interior point
disconnects 1 but not bt .

The point (3,}) of 1? nicely illustrates this many-to-one property for
Schoenberg's curve (3.1), (3.2). Since the number } can be expressed in binary forn
either as .1000... or ,0lll..., (3.4) and (3.5) imply that (x(to)y(to)) = (, ) i
the image of four distinct elements of the Cantor Set [, namely

1 11 25 8 *

%97 9'T6'3% "9
In fact, the set of all (x,y) with four pre-images in I 1is dense in the square,
Theorem 1 asserted that I, a set of Lebesgue measure zero, is sufficiently large tc bc
mapped onto 12, a set of plane measure 1 . It would now seem that [ has more points
than 12 !
In the next section, we explore yet another property of Schoenberg's curve, and

prove our main result.

4, The Peano curve of Schoenberg is nowhere differentiable. We say that a plane

curve (x(t),y(t)) is differentiable at FO if both derivatives x'(to) and y'(to)

exist and are finite, oOur goal will be to prove

Theorem 3. For no value of t do both functions

pd 1 2n
(4.1) x(t) = ) £03°"),

n=0 2n+1

T 1 2n+l
(4.2) y{t) = Z 1 £ t) ,

n=0 2

have finite derivatives x'(t), y'(t).

*
More precisely, (3,%) is a quintuple point of the curve, having its fifth pre-
image, to- 3, in [0,1]\T.

-5~
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Since f(t) is an even function of period two, then so are x({t) and <+(t). Thus 1t
suffices to prove Theorem 3 for t - I = [0,1], The theorem will follow from the 1reot
of two lemmas,

Let t be a fixed number in [0,1], expressed in ternary form by

a; 2 a,
(4,3) t = TR e T e (an = 0,1,2),
3 3
and corresponding to this t , define the following disjoint sets:
NO = {n: a2n =0 ,
N, = =
Ny in a2n 1,
= =2} .
N2 in: a !

The first of our lemmas is

Lemma 2. x'(t) does not exist finitely if NO N2 is an infinite set.

In the proof we make use of several properties of the function f(t):
(4.4) £(t+2) = £(t) for all t

If M is an integer and t M,M + %], t

1°
(4.5) |f(tl) - fe)] =1

P M+ %, M + 1], then

f(t) also satisfies the Lipschitz condition
1't2

Let us now assume that m . N_  N_, hence a =0 or a = 2. For such m , we
0 2 2m 2m

(4.6) ]f(tl) - fe))| <3 ]tl~t2i for any t

define the increment

-m

o
-

if a =0
(4.7) s = 2m '

win win
(]
-~

if aZm =2,

and seek to estimate the corresponding difference quotient

x{(t + &) - x(t) @ 1
(4.8) —_—f . =5 v,
°m n=0 2" n.m
where
£0O"(t + 5p)) - £
(4.9) ¥ =

n,m 5 *
m

————




We must distingulsi, three casus.

(1) n  m. By (4.7), o = = 2T wnien 1S oan ewen integer,
we conclude that
(4.1 ) . = 1€ I m ,
n,m
regardless of tiheo value of J“n .
(i1) n m . Here we make use o of the {31.%) to show that
e
m
,n ml _ 3 . —
! m
whence
; n
(4.11) o S 3 e for n m .
n,m' —
(iii) n = m, By (4.7}, we see that
m 2m om Yoy
(4.12) 9Tt = 3T s M e s L, (** is an integer).
} -
Here we must distinguish two subcases:
If a, =0 150 by (4.7) 9" = = 4.12) implies that o7
m » and so by . =3 (4.12) implies that M - 't
2 2 ; M 2 1 T
ST Ot e Since — + — 4+ ... = =, we find that M - Unt SN+ % .
303 . 3° 0y ' ’
therefore that M + & - 9™t + Um'm Moe 1,
. m 2 2 m
If a = 2, then by (4.7 9 = ==, R 12 . .9 )
om ' Y ) n 3 From (4.12), 1+39¢c . n
2 X m m
4+ s.. =M ¢+ 1, while = B A S 1 .
2 - m - 3
3
In cither subcase, we can apply (4.5) to conclude that
3 .,.m
(4.13) AP S AL
m,m . , 2
m
regardless of the value of aﬁm .

The results (4.1u), (4.11), and (4.13) hold under the solec assumption
m N N, .

Applying them to the difference quotient

x{(t + ) = x(t)
(4.14) PO = o s
n -
m

we find by (4.8) that

+
- |ts

K




-

o«
gt | I T vl
' neo 2n+l n,m[
m
= ‘ E ﬂil “n m;
n=N 2 !
N S
- 2m+1 m,m n=0 2n+1 n,m
,—-1-—-39’“-1“51 1 _.3.9"
—-2m+1 2 nZo 2n+1
3 9. m 3 9. .m
=7 ( 3) -5 [ (2 )y =~ 11.
and finally
x(t+s ) - x(t)
m 9 9.m 3 .
(4.15) 3 _>_3§-(3) + 3 if me Njou N,

m

Thi.s establishes Lemma 2 if, in (4.15), we let m - = through the elements of the

infinite sequence No [y N2 .

We now turn out attention to the digits of t having odd subscripts, and define

the sets
v = . =
Ny = {n: a1 0}
Vo= : =
N1 {n: A2n+l 1
[ : =
Ny = dnray =2
Now if )
a a a
0 1 2n+1
L e e i L
3 32 32n+2
then for 1 = 3t we find
a a
_ 1 2n+1
T—ao+ 3 +"'+32n+1+'°' .
At the same time
0 ®
1 2n 1 2n+l
x() = ] —=£03"0 = ] £03°M ) = vty
n=0 2n+1 n=0 A2n+1
Applying Lemma 2 to x(t) at the point 1 = 3t, we see that the digits a are the

2n+1
digits of 1 having even subscripts. We thus obtain

Corollary 1. y'(t) does not exist finitely if Né u Ns is an infinite set.




e o 'g-'bfr!!*?

By Lemma 2 and Corollary 1 we can conclude that the only t for which x'(t) ani

y'(t) might both exist and be finite, is one whose sets NO L N, and ﬂ& B

are
finite. This is the case if and only if the digits
(4.16) a = 1 for all sufficiently large n .

On the other hand, to prove the non~differentiabilit:- of the mapping *© - (x(t}, 2t
it suffices to show that one of the derivatives x'(t), y'(t) falls to exist.

Lemma 3. If t is such that (4.16) holds, then x'(t) does not exist finitel;.

The simplest t satisfying (4.16) is the one for which all a = 1, or

£

1 .
t = _—— = 3
n=0 3n+l
We must, however, treat the general case, where
a a a
0 1 2m~1 1 1
(4.17) t= 3t *toeee TR 2mel T _2me2 Tttt ot

2
3 3 3 3
with a = 0,1,2 for n=0,1,...,2m-1. To prove the lemma, we proceed as in Lemma =

by estimating the difference quotient

x(t + Gm) - x(t) © L
(4.18) = —_ ,
6m n=0 2n+1 n,m
where n
£097( + 6)) - £(9™t)
(4.19) Y =
n,m 6m

Here, though, we must abandon our former choice for the increment Rm in favor of

(4.20) § =29,
m 9

We will once again examine the quantity LA in terms of three cases:
L
R n 2 ,n-m . . .
(i) n >m, From (4.20), 9686 = =29 , which is an even integer. Thus, by
—————— m 9
property (4.4), the periodicity of f(t), we see that

(4.21) Yo =0 if n>m,
’

(ii) n < m. In this case, we again use the Lipschitz condition (4.6) to conclude

that
(4.22) ly, | <3+9" if n<m.,
n,m! —
(iii) n = m, By (4.17),
o™ = 32mt =M+ % +-35 + eee o (M is an integer),
3

whence
(4.23) 9t =M o+ )




~ 3
while
(4.24) o™ = 2,
m 9
From the graph of £f(t), in Figure 3 below, observe that
(4.25) £(N + 1) = £( }) = , for any integer N ,
and so from (4.23),
(4.26) £(9™) = ! .
The addition of (4.23) and (4.24) gives .
m m 13
9t 4+ 908 =M+ TE,
. 2 13 .
- and since 3 < 18 ¢ 1 , Figure 3 shows us that
n n 0, if M is odd
(4.27) £(9t + 9 6m) =
1, if M 1is even.
Hod
. . -+ o o | . . -
1
LRI ceoe .o
odd ., e : odd
™ ! L T
TLas. L ol YL Lo T
nedd M aun
rigure 3

Regardless of the value of M , (4.26) and (4,27) imply that
£ + 9 ) - £ = 4,
and therefore, by (4.19) and (4,20), that

(4.28) ly,. | = :

- 10=

en——




i
|
i

Applying the results (4..1), (4.22), and (4,048) to the

dlfference guotient (4.187,

x(t + - x(t)
. - m . 1
‘”Qm - - < n+l  'n,m
. m ‘per D
™
= : l
- - n+l n,m
1 mlooy
- mel "m,m’ ain a0*L y,m
n-1
1 pogm 1 N
- m+l 3 < n+l '
2 n=a 2
which yiclds
39 9 m H
2 In3 — - - .
(4.29) U _m T e
If, in (4.29), we let n <, ‘m » 1« , hence x 1is not differentiable at t . This

establishes Lemma 3, and

* While Lemma > above

thercfore also Theorem 3.

is sufficient to prove the nondifferentizhility of tife mappifg

(4.30) t o (x(t),y(t))
for t defined by (4.17), y'(t) as well may be shown not to exist for such t .
This claim is easily verified by the same argument which produced Corollary 1.

5. The generalization of Theorem 3. Analogous to Schoenberg's plane Peano curve

(4.1), (4.2) is the space curve

(5.1) xt) = T =2 £33
“ n+l
n=0 2
(5.2) v = § 0 =i g0ty
< n+1
n=0 2
- 1 2
(5.3) 2ty = 7 £(37"*%y, (0 «t-1),
n+l - -
n=0 2

introduced in $3. By way of Theorem 2, we saw that these functions define a Peano curve

S1qs . 3 - - .
filling the unit cube I~ . Here, in a similar fashion, we seek to extend Theorem 3 to

higher dimensions,




Theorem 4. The Peano curve defined by (5.1), (5.2), (5.3) above is nowhere
differentiable,
The technique of proof used for Theorem 3 will apply nicely; again we shall have
- + two lemmas and a corollary.

Indeed, with t defined by

%0 ! %n
t = 5 ¢ ;3 ¥ oee. + ;;:T + eee (an = 0,1,2),
we define the corresponding sets of integers
fa:)
M, = {n: ay = 0}, M o= {n: a, = 1}, M, = {n: a, =2},

and state

Lemma 4. The derivative X'{t) does not exist finitely if MO u Mz is an

infinite set,

For m ¢ M, u M, , we define the increment

(o] 2
2 -
333‘“ , if ag =0,
5 =
). . . o - . m 2 3m it .
-=3 ’ if a = 2,
and investigate the difference quotient
DQm . X(t + Gm) - X(t) - E 1 y
ﬁn neo 2n+1 n,m
where
£+ 8y - £
yn,m = Gm *
Proceeding as in the proof of Lemma 2, we find that
3 27 .m 3 27 .m
ol 23 ¢ 5 - T -0,
which proves Lemma 4, if we let m -+ = through the elements of Mo 1] M2 .
Using the identities Y(t) = X(3t), z(t) = x(32t), we obtain the following:
L . . L =
Corollary 2. (i) 1If the sets M) {n: a " o0}, M) {n: a1 2} are such
that Ma u Mi is an infinite set, then Y'(t) does not exist finitely. (ii) If the
” L] " L] -
sets M7 = {n: a .2 " o}, M3 = {n: a3 2" 2} are such that M3 U M5 is an infinite
[
3 set, then 2'(t) does not exist finitely.

wl2=




The only t for which all the derivatives X'(t), v'(t), 2'(t) might still exist is
one whose sets

5 ' [] "o "
Mou My, MU oMY, MMy

are all finite. This condition is true if and only if
(5.4) a = 1 for all sufficiently large n .
We now state ovr final

Lemma 5. \Suppose t satisfies (5.4), Then none of the derivatives X'(t),

Y'(t), 2'(t) exists and is finite.

The proof of the claim for X'(t) follows from the choice of

_ 2 _-3m
ém =33 ,

and those for Y'(t) and 2'(t) from arguments similar to the proof of Corollary 1}

in 84,

. 6. A final remark. ,In its nowherg djfferentjapiljty, Sqhqenperq's plane, cyrve

provides an interesting contrast to the Peano curve from which it is derived, that of

H, Lebesque (see [3]).

Under Lebesgue's mapping L(t), each (xo,yo) of 12 , expressed as
o a a

x =-2,2,4,
0 2 22 23
a a a
1 3 5
Yo = 54 =+ ==+ cua @, = 0,1),
0 2 22 5 i

is the image of a point to in Cantor's Set T of the form
2 2
- s e W
5 ces  u
0 3 3 33

This correspondence we now recognize as a restatement of the relations (3.5). As such,
L(t) coincides with Schoenberg's curve on T , and thus must lack a finite derivative
there.

Lebesgue then extends the domain of L(t) to all of ([0,1] by means of linear
interpolation over each of the open intervals which comprise the complement of T .

Defined in this manner, L(t) must indeed be differentiable on [0,1]\l, and hence

constitutes an example of a Peano curve which, unlike Schoenberg's, is differentiable

almost everywhere,
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20. Abstract (continued)

function having the period 2 (See Figure 1). The plane arc defined

parametrically by the equations

© 2n ® 2n+l
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is known to be continuous, and to map the interval I = {0 < x < 1} onto the

£
Here it is shown that this arc 13

entire square 1% = {o < x,y <1} (see [3]).
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nowhere differentiable, meaning the following: There is no value of t such

that both derivatives x'(t) and y'(t) exist and are finite.
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